红外辐射是指波长在0.75um至1000um,介于可见光波段与微波波段之间的电磁辐射。红外辐射的存在是由天文学家赫胥尔在1800年进行棱镜试验时发现。红外辐射具有以下特点及应用:
(1)所有温度在热力学零度以上的物体都自身发射电磁辐射,而一般自然界物体的温度所对应的辐射峰值都在红外波段。因此,利用红外热像观察物体无需外界光源,相比可见光具有更好的穿透烟雾的能力。红外热像是对可见光图像的重要补充手段,广泛用于红外制导、红外夜视、安防监控和视觉增强等领域。
(2)根据普朗克定律,物体的红外辐射强度与其热力学温度直接相关。通过检测物体的红外辐射可以进行非接触测温,具有响应快、距离远、测温范围宽、对被测目标无干扰等优势。因此,红外测温特别是红外热像测温在预防性检测、制程控制和品质检测等方面具有广泛应用。
(3)热是物体中分子、原子运动的宏观表现,温度是度量其运动剧烈程度的基本物理量之一。各种物理、化学现象中,往往都伴随热交换及温度变化。分子化学键的振动、转动能级对应红外辐射波段。因此,通过检测物体对红外辐射的发射与吸收,可用于分析物质的状态、结构、状态和组分等。
(4)红外辐射具有较强的热效应,因此广泛地用于红外加热等。
综上所述,红外辐射在我们身边无处不在。而对于红外辐射的检测及利用,更是渗透到现代军事、工业、生活的各个方面。由于人眼对于红外辐射没有响应,因此对于红外辐射的感知和检测必须利用专门的红外探测器。红外辐射波段对应的能量在0.1eV-1.0eV之间,所有在上述能量范围之内的物理化学效应都可以用于红外检测。在发现红外辐射后至今的几百年内,人们研制了各种各样的红外探测器。
红外热成像仪原理
非制冷红外焦平面探测器由许多MEMS微桥结构的像元在焦平面上二维重复排列构成,每个像元对特定入射角的热辐射进行测量,其基本原理如图4所示,a):红外辐射被像元中的红外吸收层吸收后引起温度变化,进而使非晶硅热敏电阻的阻值变化;b):非晶硅热敏电阻通过MEMS绝热微桥支撑在硅衬底上方,并通过支撑结构与制作在硅衬底上的COMS独处电路相连;c):CMOS电路将热敏电阻阻值变化转变为差分电流并进行积分放大,经采样后得到红外热图像中单个像元的灰度值。
为了提高探测器的响应率和灵敏度,要求探测器像元微桥具有良好的热绝缘性,同时为保证红外成像的帧频,需使像元的热容尽量小以保证足够小的热时间常数,因此MEMS像元一般设计成如图5所示的结构。利用细长的微悬臂梁支撑以提高绝热性能,热敏材料制作在桥面上,桥面尽量轻、薄以减小热质量。在衬底制作反射层,与桥面之间形成谐振腔,提高红外吸收效率。像元微桥通过悬臂梁的两端与衬底内的CMOS读出电路连接。所以,非制冷红外焦平面探测器是CMOS-MEMS单体集成的大阵列器件。
24小时咨询热线
0512-66315386扫一扫,关注我们
版权所有©2024 苏州东伟元电子有限公司 备案号:苏ICP备13024284号-1
技术支持:化工仪器网 管理登陆 sitemap.xml